1. Analysis of an unknown organic compound **J** produces the following results.

Elemental analysis by mass of compound J

C, 80.60%; H, 7.46%; O, 11.94%

Mass spectrum of compound J

IR spectrum of compound J

Proton NMR spectrum of compound J

The numbers by the peaks are the relative peak areas.		
etermine the structure of compound J , showing all your reasoning.		
	I.C.	
	[6]	

2. Which compound could have produced the IR spectrum shown below?

- A HOCH₂CHO
- B CH₃CH₂COOH
- C CH₃CH₂COOCH₃
- \mathbf{D} (CH₃)₂C(OH)COOH

Your answer [1]

3. The structures of 3 compounds, **1**, **2** and **3**, are shown below.

Which compound(s) would produce a carbon-13 NMR spectrum with 2 peaks?

PO OH 3

A 1, 2 and 3

1

- B Only 1 and 2
- C Only 2 and 3
- **D** Only 1

Your answer [1]

4. There are 4 structural isomers of $C_4H_{10}O$ that are alcohols.

A student predicts that these structural isomers could be distinguished using carbon-13 NMR spectroscopy.

Explain whether the student is correct.

In your answer, show how the peaks in the carbon-13 NMR spectra are linked to the structure of each alcohol isomer.	
	_
	_
	_
	_
[[5]

5. An unknown organic compound is analysed.

The results are shown below.

Addition of 2,4-DNP

No visible change

Elemental analysis by mass

C, 66.63%; H, 11.18%; O, 22.19%

Mass spectrum

Molecular ion peak at m/z = 144.0

IR spectrum

Proton NMR spectrum

The numbers by each peak are the relative peak areas.

Use the information to identify the organic compound.

Snow all your reasoning.	
	rai

6. Which compound has the greatest number of peaks in its proton NMR spectrum?

A	١
В	Br Br
С	НО
D	

Your answer [1]

- 7. Which compound is used for proton exchange in NMR spectroscopy?
- **A** CC*I*₄
- B CDC/₃
- \mathbf{C} D_2O
- D Si(CH₃)₄

Your answer [1]

8. This question is about the chemistry of aromatic compounds.

Compounds J, K and L, shown below, are structural isomers.

i. What chemical test(s) could be used to confirm the presence of the phenol group in compounds **K** and **L**?

6.3.2 S	Spectroscopy PhysicsAndMathsTutor.	「utor.com	
		_	
		[1]	
ii.	A student thought that 13 C NMR spectroscopy could be used to distinguish between compounds J , K a L .	nd	
	Explain, with reasoning, whether the student is correct.		
		_	
		_	
		[3]	
iii.	Compound ${f J}$ is substituted at the 2- and 4- positions by chlorine in the presence of a catalyst.		
	Outline the mechanism for the 4 substitution of compound ${f J}$ by chlorine in the presence of a catalyst.		
	Show the role of the catalyst.		

9 . W	hich compound produces two triplets in its ¹ H NMR spectrum?	
A B C D	CH ₃ CH ₂ COOCH ₂ CH ₃ CH ₃ CH ₂ COCH ₂ CH ₃ HOOCCH ₂ CH ₂ COOH HOOCCH ₂ CH ₂ COOH	
You	r answer	[1]
10. \	Which isomer(s) of C₅H12O has/have 4 peaks in its/their ¹³C NMR spectrum?	
	 3-methylbutan-2-ol 2-methylbutan-2-ol 2-methylbutan-1-ol 	
A B C D	1, 2 and 3 Only 1 and 2 Only 2 and 3 Only 1	
You	r answer	[1]
11.	This question is about unsaturated hydrocarbons.	
Com	pounds ${\bf B}$ and ${\bf C}$ are branched hydrocarbons that are structural isomers of C_6H_{12} .	
Com	pounds B and C both have stereoisomers.	
• Co	mpound B has <i>cis</i> and <i>trans</i> isomers but does not have optical isomers.	
• Co	mpound C has optical isomers but does not have <i>cis</i> and <i>trans</i> isomers.	
i.	What is meant by the term structural isomers ?	
		[1]
ii.	What is meant by the term stereoisomers ?	
		[1]

[2]

ii. Draw structures for the <i>cis</i> and <i>trans</i> isomers of the b	ranched hydrocarbon B .
cis isomer	trans isomer
	[2
Draw 2D atministrator for the entired increase of common	in al C
 Draw 3D structures for the optical isomers of compou 	na C.
Optical	l isomers

v. Compounds ${f D}$ and ${f E}$ are two more structural isomers of C_6H_{12} .

Compounds ${\bf D}$ and ${\bf E}$ do ${\bf not}$ show stereoisomerism.

Table 16.1 shows NMR and infrared (IR) spectral data for **D** and **E**.

	Number of peaks in ¹ H NMR spectrum	Number of peaks in ¹³ C NMR spectrum	IR peak at 1620–1680 cm ⁻¹
D	1	1	No
E	1	2	Yes

Draw the structures of **D** and **E** and explain how the spectral data in **Table 16.1** provides evidence for the structures.

	1
D	E

12. The organic compound **H** contains carbon, hydrogen and oxygen only and has an M_r of 114.0.

Compound **H** has two carbonyl groups and no other functional groups.

The ¹H NMR spectrum of organic compound **H** is shown below.

chemical shift, δ /ppm

The numbers by the peak	s are the relative pea	ak areas.		
Analyse the spectrum to s	suggest a possible st	ructure for compou	ınd H .	
Show all your reasoning.				
		Compound H		

13. The structure of an organic compound is shown below.

The protons are in four different environments, which are labelled 1-4.

i. Fill in the table to predict the splitting patterns in the **proton** NMR spectrum of the organic compound.

Proton environment	Splitting pattern
1	
2	
3	
4	

[2]

ii. The table shows the chemical shifts for the peaks in the **proton** NMR spectrum at proton environments **2** and **3**.

Proton environment	2	3	
Chemical shift, δ	2.5 ppm	3.6 ppm	
Suggest why the peaks for proton environmenthe table.	nts 2 and 3 have the chemic	cal shifts which are shown i	in
			[2]

END OF QUESTION PAPER